Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > GMU scientists design nanoparticle for use in early disease detection

January 23rd, 2008

GMU scientists design nanoparticle for use in early disease detection

Abstract:
Scientists at George Mason University have developed a new technology to detect diseases such as cancer at an earlier stage than with standard testing methods.

They plan to take their innovation into the commercial market this year, followed by widespread distribution in physicians' offices.

Molecules in blood samples also start to degrade very quickly, which can change the biomarkers.

The team has designed smart hydrogel nanoparticles that can be mixed with blood samples. The particles "concentrate, capture, protect and preserve biomarkers," Liotta said.

A team at the university's Center for Applied Proteomics and Molecular Medicine has figured out a way to better identify biomarkers, which can indicate the presence of cancer, as well as cardiovascular and infectious diseases.

"The basic problem in biomarkers is that they're in very low concentration," said Dr. Lance Liotta, co-director of the center. A tiny tumor will produce a tiny amount of biomarkers that will be diluted in a blood sample.

Source:
examiner.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project