Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brain-computer link systems on the brink of breakthrough, study finds

Abstract:
Blue-ribbon panel sees commercial uses coming soon not just in medicine but other fields

Brain-computer link systems on the brink of breakthrough, study finds

LOS ANGELES, CA | Posted on December 13th, 2007

Systems that directly connect silicon circuits with brains are under intensive development all over the world, and are nearing commercial application in many areas, according to a study just placed online.

Neurobiologist Theodore W. Berger of the University of Southern California chaired the eight-member committee which compiled the "International Assessment of Research and Development in Brain-Computer Interfaces," published in October by the World Technology Evaluation Center, Inc., of Baltimore MD

The report is now downloadable online at the WTEC website, at http://www.wtec.org/bci/BCI-finalreport-10Oct2007-lowres.pdf

Berger, who holds the David Packard Chair at the USC Viterbi School of Engineering and is Director of the USC Center for Neural Engineering contributed the introduction and two chapters of the report, which encompassed dozens of research institutes in Europe and Asia.

The other committee members (and chapter authors) included John K. Chapin (SUNY Downstate Medical Center); Greg A. Gerhardt (University of Kentucky); Dennis J. McFarland (Wadsworth Center); José C. Principe (University of Florida); Dawn M. Taylor (Case Western Reserve); and Patrick A. Tresco (University of Utah).

The report contains three overall findings on Brain-Computer Interface (BCI) work worldwide:

* BCI research is extensive and rapidly growing, as is growth in the interfaces between multiple key scientific areas, including biomedical engineering, neuroscience, computer science, electrical and computer engineering, materials science and nanotechnology, and neurology and neurosurgery.

* BCI research is rapidly approaching first-generation medical practice—clinical trials of invasive BCI technologies and significant home use of noninvasive, electroencephalography (EEG-based) BCIs. The panel predicts that BCIs soon will markedly influence the medical device industry, and additionally BCI research will rapidly accelerate in non-medical arenas of commerce as well, particularly in the gaming, automotive, and robotics industries.

* The focus of BCI research throughout the world was decidedly uneven, with invasive BCIs almost exclusively centered in North America, noninvasive BCI systems evolving primarily from European and Asian efforts. BCI research in Asia, and particularly China, is accelerating, with advanced algorithm development for EEG-based systems currently a hallmark of China's BCI program. Future BCI research in China is clearly developing toward invasive BCI systems, so BCI researchers in the US will soon have a strong competitor.

The chapters of the report offer detailed discussion of specific work from around the world, work on Sensor Technology, Biotic-Abiotic Interfaces, BMI/BCI Modeling and Signal Processing, Hardware Implementation, Functional Electrical Stimulation and Rehabilitation Applications of BCIs, Noninvasive Communication Systems, Cognitive and Emotional Neuroprostheses, and BCI issues arising out of research organization-funding, translation-commercialization, and education and training.

With respect to translation and commercialization, the Committee found that BCI research in Europe and Japan was much more tightly tied to industry compared to what is seen in the U.S., with multiple high-level mechanisms for jointly funding academic and industrial partnerships dedicated to BCIs, and mechanisms for translational research that increased the probability of academic prototypes reaching industrial paths for commercialization.

A consortium including the National Science Foundation, The United States Army Telemedicine and Advanced Technology Research Center, the National Institute of Neurological Disorders and Stroke, the National Space Biomedical Research Institute, National Institute of Biomedical Imaging and Bioengineering, and the Margot Anderson Brain Restoration Foundation commissioned the report.

The World Technology Evaluation Center, Inc. < http://www.wtec.org/> specializes in conducting international technology assessments via expert review, having conducted more than 60 such studies since 1989.

####

For more information, please click here

Contacts:
Eric Mankin

213-821-1887

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project