Home > News > UQ scientists make a quantum leap in research
December 11th, 2007
UQ scientists make a quantum leap in research
Abstract:
University of Queensland researchers are among an international team to have made the first ever execution of a quantum calculation, a major step towards building the first quantum computers.
Story:
Professor Andrew White, from UQ's Centre for Quantum Computer Technology together with colleagues from the University of Toronto in Canada, said by manipulating quantum mechanically entangled photons - the fundamental particles of light - the prime factors of the number 15 were calculated.
"Prime numbers are divisible only by themselves and one, so the prime factors of 15 are three and five," Professor White said.
"Although the answer to this problem could have been obtained much more quickly by querying a bright eight-year-old, as the number becomes bigger and bigger the problem becomes more and more difficult.
"What is difficult for your brain is also difficult for conventional computers. This is not just a problem of interest to pure mathematicians: the computational difficulty of factoring very large numbers forms the basis of widely used internet encryption systems."
Ben Lanyon, UQ doctoral student and the research paper's first author, said calculating the prime factors of 15 was a crucial step towards calculating much larger numbers, which could be used to crack cryptographic codes that are unbreakable using conventional computers.
"Our goal is not to break these codes in practice, but to show that they can be broken, and motivate a move to a more secure system," Mr Lanyon said.
"These codes form the basis of most banking and computer security and has implications of how we keep all data secure in the future."
Professor White said in any computer a problem must be broken down into manageable chunks.
"Classical computers use two-level systems called bits (binary digits) while quantum computers use two-level 'quantum-mechanical' systems called qubits (quantum bits)," he said.
"A qubit is like a coin that can be heads (on), tails (off) or simultaneously heads AND tails (on and off) or any possible combination in-between.
"This is impossible with normal bits but one qubit can be in two possible states, two qubits can be in four, three qubits in eight, and so on. Quantum memory sizes grow exponentially with the number of qubits.
"Functional large-scale quantum computers may be as many years away, and it is hard to know how they will change the world, but change our world they will."
The research will be published in the prestigious Physical Review Letters later this month.
Related News Press |
Quantum Computing
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Programmable electron-induced color router array May 14th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |