Home > News > Variable nanocomposites
December 6th, 2007
Abstract:
What appear under an atomic force microscope to be tiny rings with little bits missing are actually nanoscopic rings made of double-stranded DNA with a little gap in the form of a short single-stranded fragment. As Michael Famulok and his team from the University of Bonn, Germany, explain in the journal Angewandte Chemie, this gap is a place to attach other molecules that have the potential to transform the rings into versatile nanocomposites for various applications.
The programmable aggregation of molecular building blocks into structures with higher order plays a key role in the construction of nanomaterials. Nucleic acids are interesting building block candidates, being easy to synthesize and exhibiting unique molecular recognition characteristics. The difficulty lies in the fact that the construction of defined two- or three-dimensional geometries requires rigid building blocks. However, DNA molecules are normally flexible structures.
Source:
physorg.com
Related News Press |
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |