Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > "Golden bullet" shows promise for killing common parasite

Abstract:
Researchers in Australia report development of a new type of gold nanoparticle that destroys the parasite responsible for toxoplasmosis, a potentially serious disease acquired by handling the feces of infected cats or eating undercooked meat. Their so-called "golden bullet" could provide a safer, more effective alternative for treating the disease than conventional drug therapy, they say. The study is scheduled for the Dec. issue of ACS' Nano Letters, a monthly journal.

"Golden bullet" shows promise for killing common parasite

Sydney, Australia | Posted on December 5th, 2007

Toxoplasma gondii, the parasite that causes the disease, infects more than 60 million people in the United States alone. Although most infected people have no symptoms, it can cause serious health problems in pregnant women and individuals such as AIDS patients or organ transplant recipients who have weakened immune systems.

In the new study, Michael Cortie and colleagues attached antibodies to the parasite onto gold nanorods that are activated by laser-light. A group of Toxoplasma-infected animal cells were isolated in cell culture dishes and subsequently exposed to these "golden bullets." The cells were then exposed to laser-light, which heated up the "bullets" and destroyed the parasites. The treatment killed about 83 percent of the parasites containing the gold particles, the researchers say. They hope to develop a similar technique for killing the parasite in patients.

####

For more information, please click here

Contacts:
Michael B. Cortie, Ph.D.
University of Technology Sydney
Sydney, Australia
Phone: 61 02 9514 2208

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD PDF

Related News Press

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project