Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Buckyball birth observed by Sandia nanotech researcher

Atomic images of the inside of a nanotube show the formation of fullerenes, their reduction to C-60 buckyballs, and their dispersion when heated beyond that point. The images were taken by a transmission electron microscope.
Atomic images of the inside of a nanotube show the formation of fullerenes, their reduction to C-60 buckyballs, and their dispersion when heated beyond that point. The images were taken by a transmission electron microscope.

Abstract:
Work confirms hypothesis of Nobel laureate Smalley

Buckyball birth observed by Sandia nanotech researcher

ALBUQUERQUE, NM | Posted on November 23rd, 2007

Almost everyone in the scientific community has heard of buckyballs, but no one until Sandia's Jianyu Huang has seen one being born.

Buckyballs — more formally known as buckminsterfullerene C-60 — are carbon-linked nanostructures named for their resemblance to the geodesic dome macrostructures favored for their strength by environmentalist Buckminster Fuller.

In addition to the strength generated by their carbon-carbon bonds — "the strongest chemical bonds in Mother Nature," says Huang, who still seems awed by the properties of the nanomaterial — the structure forms a relatively impermeable cage that conceivably could safely transport molecules of hydrogen for fuel, or tiny doses of medicine to targeted sites within the human body.

But before their widespread use is possible, buckyballs have to be available in large numbers. To achieve that, better understanding of how they form is crucial.

"We have now the first direct, in situ, experimental proof of the hypothesis — very significant to the scientific community — that these structures are formed by the heated ‘shrink-wrapping' of carbon sheets," says Huang.

That is, heating bends single-atomic-layer carbon sheets into nano bowls, and then adds more carbon atoms to the edge of the bowls until the formation of giant fullerenes — larger, less stable versions of the C-60 molecule. Continued application of heat reduces these fullerenes — "shrink-wrapping" is the favored term — to the size of stable C-60 molecules, the buckyball: the smallest stable arrangement of carbon atoms in that shape.

In further heating, the buckyball vanishes, providing more proof that the buckyball stage had been reached.

Buckyball codiscoverer (1985) and Nobel laureate (1996) Richard Smalley had hypothesized that buckyballs are formed in this fashion, but at his death in 2005 no experimental confirmation was yet available and other methods have been proposed.

A paper detailing the work was published in the Oct. 26 Physical Review Letters.

Sandia is a National Nuclear Security Administration laboratory.

Huang's discovery happened unexpectedly. He was in fact looking for flaws in nanotube durability. Transmitting electric current through the atom-sized tip of a scanning tunneling microscope (STM) — itself inside a transmission electron microscope (TEM) — he had heated a 10-nanometer-diameter multiwalled carbon nanotube to approximately 2,000 degrees Celsius when he saw the exterior shells of giant fullerenes form from peelings within the nanotube. High-resolution 2-D images of the process taken by a CCD camera attached to the microscope showed the fullerenes reducing in diameter, linearly with time, until the structures became the size of C-60, the smallest arrangement of carbon atoms that form the soccerball shape.

Then the buckyballs vanished.

Simulations created at Huang's request by Boris Yakobson's team at Rice University, who coauthored the Physical Review paper, show that heating could reduce fullerenes by emitting carbon dimers (pairs of atoms) until they reached the basic buckeyball shape. Further removal of carbon pairs collapsed the structure.

Buckyballs are formed by hexagonal and pentagonal arrangements of carbon atoms that seem stitched or welded together, in appearance much like a soccer ball. Their curvature, however, is caused by the pentagons alone, 12 to a buckyball. Departing atoms leave the same number of pentagons until the fullerene shrinks below its smallest stable shape, below which the buckyball disintegrates.

"I used to study metals," says Huang, who grew up in a remote Chinese farming village and now utilizes the most complex instruments at Sandia's Center for Integrated Nanotechnologies (CINT). "But carbon nanomaterials now are much more interesting to me."

CINT is a joint effort of Sandia and Los Alamos national labs and is supported by the DOE's Office of Science.

The buckyball discovery was initially made by Huang on similar instruments at Boston College, and then interpreted at CINT.

"The STM probe inside the TEM is a very powerful tool in nanotechnology," Huang says. "The STM probe is like God's finger: it can grab extremely small objects, as small as a single atomic chain, enabling me to do nanomechanics, nanoelectronics, and even thermal studies of carbon nanotubes and nanowires."

The research was paid for by CINT and Sandia's Laboratory Directed Research and Development program.

####

About Sandia National Laboratories
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

For more information, please click here

Contacts:
Neal Singer

(505)845-7078

Copyright © Sandia National Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project