Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dude, big screen TVs, flexible electronics and surfboards made from same new material!

Abstract:
Producing controlled-grid patterns of nanotube arrays for strengthening polymer composites

Dude, big screen TVs, flexible electronics and surfboards made from same new material!

Australia | Posted on November 21st, 2007

There is nothing new about combining two materials to make a composite material with more desirable properties than the originals. Fibreglass has been a mainstay of the marine industry for decades and the construction industry is built on reinforced concrete. Now carbon nanotubes (CNT) are getting in on the act with nanotechnologists working out how to grow nanotube reinforcements for polymers in an ideal manner.

Researchers from Trinity College have developed a scalable inexpensive technique to grow grid patterns of nanotube arrays. To maximise the effect of CNT reinforcement on a polymer thin film, while minimizing nanotube content, a controllable way of varying the volume fraction of CNTs within the composite is needed. In order to do this, the inter-grid spacing can be tailored as required giving a simple method of controlling the volume fraction of nanotubes grown on substrates.

The research work by Werner J. Blau, Dr. Emer Lahiff, Andrew I. Minett and Dr. Kentaro Nakajima is expected to lead to incorporation of CNTs in polymer matrices within flat panel displays, sensors, flexible electronic devices and actuators.

The study has been published in a special edition of the open access journal, AZoJono. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology.

The article is available to view in full at http://www.azonano.com/Details.asp?ArticleID=2040

####

About AZoNetwork
*AZojono publishes high quality articles and papers on all aspects of nanomaterials and related technologies. All the contributions are reviewed by a world class panel of editors who are experts in a wide spectrum of materials science. [See http://www.azonano.com/founding_editors.asp ]

AZojono is based on the patented OARS (Open Access Rewards System) publishing protocol. The OARS protocol represents a unique development in the field of scientific publishing – the distribution of online scientific journal revenue between the authors, peer reviewers and site operators with no publication charges, just totally free to access high quality, peer reviewed materials science. [See http://www.azonano.com/nanotechnology%20journal.asp and http://www.azonano.com/journal_of_nanotechnology.asp ]

Members of DESYGN-IT are Trinity College Dublin, National University of Ireland Cork, Jozef Stefan Institute, University of Ulster, Queen Mary and Westfield College, Queen University Belfast, Fraunhofer-Gesellschaft, University of Cambridge, Toughglass, Sensor Technology & Devices, Mid Sweden University, Ntera, Mo6 and University of Latvia.

For more information, please click here

Contacts:
Ian Birkby

61-029-999-0070

Copyright © AZoNetwork

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project