Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Sangeeta Bhatia of MIT Pioneers Key Biomedical Advances

November 20th, 2007

Sangeeta Bhatia of MIT Pioneers Key Biomedical Advances

Abstract:
Early this year Bhatia made headlines for her work in developing extremely tiny particles that mimic blood platelets -- a feat of engineering that someday could dramatically change cancer treatment.

"We've been interested in making nanoparticles that can detect tumors and deliver chemotherapy locally," says Bhatia. "Some people call it analogous to the movie "Fantastic Voyage" in which a submarine is miniaturized and injected into the bloodstream of a human body. "The idea sounds fantastical, but the technologies are there to do it."

Bhatia's Laboratory for Multiscale Regenerative Technologies is trying to build microscopic particles that can repair and rebuild human tissue. Nanoparticles that mimic blood platelets are capable of homing in on tumors, then clumping around them. Potentially, the particles could coagulate into a big enough clot to choke the blood supply to the tumor, or they could deliver a payload of drugs, or they could help send an image to an MRI machine.

Source:
indolink.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project