Home > News > Making flexible electronics
November 13th, 2007
Making flexible electronics
Abstract:
Laser- and nanoparticle-based processing methods enable high-resolution, maskless fabrication of inexpensive large-area flexible electronics on polymer substrates.
Manufacture of electric circuits on polymer substrates is broadly referred to as flexible electronics and has gained significant interest as a pathway to low-cost or large-area electronics. Although conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics, they are not appropriate for this application. Flexible polymer substrates are chemically incompatible with resists, etchants, and developers used in conventional integrated circuit (IC) processing. In practice, the usual IC fabrication processes involve multiple steps and high processing temperatures and produce toxic waste, all of which add to their cost. Furthermore, the increasing size of electronic devices such as displays poses great difficulty in adapting standard microfabrication techniques, including lithographic patterning.
Source:
spie.org
Related News Press |
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |