Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Heavier hydrogen on the atomic scale reduces friction

This hot filament chemical vapor deposition (HFCVD) system is used for the hydrogen and deuterium termination of diamond surfaces.
This hot filament chemical vapor deposition (HFCVD) system is used for the hydrogen and deuterium termination of diamond surfaces.

Abstract:
Scientists may be one step closer to understanding the atomic forces that cause friction, thanks to a recently published study by researchers from the University of Pennsylvania, the University of Houston and the U.S. Department of Energy's Argonne National Laboratory.

Heavier hydrogen on the atomic scale reduces friction

ARGONNE, IL | Posted on November 3rd, 2007

The research, led by Robert Carpick of the University of Pennsylvania, found a significant difference in friction exhibited by diamond surfaces that had been coated with different isotopes of hydrogen and then rubbed against a small carbon-coated tip.

Scientists lack a comprehensive model of friction on the nanoscale and only generally grasp its atomic-level causes, which range from local chemical reactions to electronic interactions to phononic, or vibrational, resonances.

To investigate the latter, Argonne scientist Anirudha Sumant and his colleagues used single-crystal diamond surfaces coated with layers of either atomic hydrogen or deuterium, a hydrogen atom with an extra neutron. The deuterium-terminated diamonds had lower friction forces because of their lower vibrational frequencies, an observation that Sumant attributed to that isotope's larger mass. They have also observed same trend on a silicon substrate, which is structurally similar to that of diamond.

Previous attempts to make hydrogen-terminated diamond surfaces relied on the use of plasmas, which tended to etch the material.

"When you're looking at such a small isotopic effect, an objectively tiny change in the mass, you have to be absolutely sure that there are no other complicating effects caused by chemical or electronic interferences or by small topographic variations," Sumant said. "The nanoscale roughening of the diamond surface from the ion bombardment during the hydrogen or deuterium termination process, even though it was at very low level, remained one of our principal concerns."

Sumant and his collaborators had looked at a number of other ways to try to avoid etching, even going to such lengths as to soak the films in olive oil before applying the hydrogen layers. However, no method had provided a smooth, defect-free hydrogen layer with good coverage that would avoid generating background noise, he said.

However, while performing work at the University of Wisconsin-Madison, Sumant developed a system for depositing diamond thin films. The technique, called hot filament chemical vapor deposition, involves the heating of a tungsten filament (like those found in incandescent light bulbs) to over 2000 degrees Celsius.

If the diamond film is exposed to a flow of molecular hydrogen while sitting within a centimeter of the hot filament, the heat will cause the molecular hydrogen to break down into atomic hydrogen, which will react with the film's surface to create a perfectly smooth layer. Since this method does not require the use of plasma, there is no danger of ion-induced etching.

"We've proved that this is a gentler method of terminating a diamond surface," Sumant said.

Sumant said that he hopes to use the knowledge gained from the experiment to eventually discover a way to manipulate the friction of surfaces on the atomic level. Such a result would prove immensely valuable to the development of nanoelectromechanical systems, or NEMS, based on diamonds, one of Sumant's primary research interests at Argonne's Center for Nanoscale Materials.

The paper, "Nanoscale Friction Varied by Isotopic Shifting of Surface Vibrational Frequencies," appears in the November 2 issue of Science.

The research was supported by the National Science Foundation, an NSF Graduate Research Fellowship, the Air Force Office of Scientific Research and the Department of Energy's Office of Science, Office of Basic Energy Sciences.

By Jared Sagoff.

####

About Argonne National Laboratory
Argonne National Laboratory, a renowned R&D center, brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

About The Center for Nanoscale Materials

The Center for Nanoscale Materials at Argonne National Laboratory is a joint partnership between the U.S. Department of Energy (DOE) and the State of Illinois, as part of DOE'S Nanoscale Science Research Center program. The CNM serves as a user-based center, providing tools and infrastructure for nanoscience and nanotechnology research. The CNM's mission includes supporting basic research and the development of advanced instrumentation that will help generate new scientific insights and create new materials with novel properties. The existence of the CNM, with its centralized facilities, controlled environments, technical support, and scientific staff, enabled researchers to excel and significantly extend their reach.

For more information, please click here

Contacts:
Steve McGregor
630/252-5580

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project