Home > News > Early diagnosis of prostate cancer with gold nanoparticles
November 1st, 2007
Early diagnosis of prostate cancer with gold nanoparticles
Abstract:
Treating prostate cancer is a race against time. By the time the patient can feel the first symptoms, the disease has usually spread too far. A novel diagnostic technique combines optical imaging with ultrasound, thus improving early diagnosis.
By the time the first symptoms of prostate cancer become apparent, the tumor has usually spread too far and there is little hope of curing it. Early diagnosis can help to save lives. While CAT scans, X-rays and magnetic resonance devices can frequently detect tumors in time, the cost of routine examinations is often too high, and the devices are not always sensitive enough. Ultrasound is a cost-efficient alternative, but is not very reliable.
A novel, cost-efficient and sensitive device will soon increase the number of early diagnoses of prostate cancer and offer more patients the prospect of recovery. This diagnostic device was developed by researchers at the Fraunhofer Institute for Biomedical Technology IBMT in St. Ingbert in collaboration with partners from five European countries. The European Commission is funding the project to the tune of 2.2 million euros. "We use a combination of two different imaging techniques: optical imaging and ultrasound," says IBMT department manager Dr. Robert Lemor. "We shine laser light into the tissue, causing it to heat up and expand. This generates pressure in the form of a sound wave, which spreads through the tissue in much the same way as ultrasound and is also detected in the same way." The researchers thus combine the good contrast of light with the good spatial resolution of sound, using the advantages of both systems.
Source:
nanowerk.com
Related News Press |
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |