Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ApNano Materials to Manufacture New Line of Nanotechnology-Based Optically Black Coatings for Solar and Optical Applications

Abstract:
ApNano Materials, Inc.( http://www.apnano.com ), a provider of nanotechnology-based products, today announced a new line of nanotechnology-based non-reflective, optically black coatings. The new coatings will be used, in the first phase, in solar energy systems and optical application such as high performance optics and lenses. In the second phase, the nanotechnology-based coatings will be used in avionics systems and medical diagnostic applications.

ApNano Materials to Manufacture New Line of Nanotechnology-Based Optically Black Coatings for Solar and Optical Applications

New York, NY | Posted on October 24th, 2007

Heat and light absorbing coatings are commonly used in solar power and heating systems, heat pipes, lens barrels, various optical systems, satellites, and cameras, to name a few applications.

"ApNano Materials' nanoparticles are excellent optical absorbing materials and among the best substances absorbing light in the visible and near infra-red wavelengths," said Dr. Menachem Genut, President and CEO of ApNano Materials. "Laboratory experiments have shown that our nanoparticles absorb at least 98% of the light in visible wavelengths."

The solar applications will include both solar thermal and photovoltaic absorbers. The solar coatings that will be produced by ApNano Materials will offer more efficient conversion of solar energy.

"The rapid international growth in the demand for solar energy requires innovative technologies to improve the efficiency of solar systems, and black coatings based on ApNano's nanoparticles provide an ideal answer for this need," said Aharon Feuerstein, ApNano Materials' Chairman and CFO.

ApNano's revolutionary nanoparticles of tungsten disulfide, (WS2), termed inorganic fullerene-like nanostructures, or IF for short, are soccer ball-like clusters of molecules, named after R. Buckminster Fuller, architect of the geodesic dome that he designed for the 1967 Montreal World Exhibition. The inorganic fullerenes were first discovered in a breakthrough research conducted at the Weizmann Institute of Science, Israel, by a group headed by Professor Reshef Tenne, who currently holds the Drake Family Chair in Nanotechnology and serves as the Director of Helen and Martin Kimmel Center for Nanoscale Science at the Weizmann Institute. Dr. Menachem Genut, ApNano Materials' President and CEO was a research fellow in the original research team which discovered the IF nanoparticles at the Weizmann Institute and first to synthesize the new material.

"The new line is ApNano's second energy-related product and follows NanoLub, the world's first commercial nanotechnology-based solid lubricant," said Dr. Niles Fleischer, Vice President of Business Development and Vice President of Product Development of ApNano Materials. "In addition to energy-related applications, ApNano's nanomaterial has been proved, so far, as an ideal material for shock absorbing applications, such as personal armor products."

Recently ApNano Materials opened a new 1,000 square meter manufacturing facility in Israel. The facility houses a semi-industrial reactor with a production capacity of tons of the company's nanomaterial. The new state-of-the-art manufacturing facility meets international guidelines for health, safety and manufacturing of nanomaterials.

####

About ApNano Materials, Inc.
ApNano Materials ( http://www.apnano.com ), is a private nanotechnology company founded in 2002 by Dr. Menachem Genut, President and CEO and Mr. Aharon Feuerstein, Chairman and CFO. ApNano Materials was incorporated in the US and is headquartered in New York, USA. Its fully-owned Israeli subsidiary - NanoMaterials, Ltd., is located in the high tech science park adjacent to the Weizmann Institute campus in Nes Ziona, Israel. The company was granted an exclusive license by Yeda Research and Development Co. Ltd, the commercial arm of the Weizmann Institute of Science, Israel, to manufacture, commercialize and sell a new class of nanomaterials based on inorganic compounds that were discovered at the Institute. The shareholders of ApNano Materials, besides the founders, are Newton Technology VC Fund, Yeda Research and Development Co. LTD. (the commercial arm of the Weizmann Institute of Science), AYYT LTD. (the commercial arm of HIT, Israel), and private European investors.

NanoLub is a trademark of ApNano Materials, Inc.

For more information, please click here

Contacts:
David Kanaan
Kanaan Public Relations
Tel.: +972-3-5408188
Mobile phone: +972-54-4255307
e-mail:

Copyright © ApNano Materials, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Aerospace/Space

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project