Home > News > Bouncing bucky balls
October 17th, 2007
Bouncing bucky balls
Abstract:
C60 molecules have an intriguing ball-shaped structure that suggests several interesting possibilities for motion on surfaces. Indeed, researchers have found that the passage of electrons through a bucky ball in a transistor is correlated to the spinning of the ball around its center of mass. Moreover, since bucky balls look like molecular ball bearings, it has been thought that they may be useful as lubricants for use in automobile brakes. Now a team of researchers at the University of Bologna (Italy) and the University of Liverpool (UK) have carried out detailed molecular dynamics simulations to understand the motion of bucky balls on metal surfaces ("C60 on Gold: Adsorption, Motion, and Viscosity").
Source:
nanowerk.com
Related News Press |
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |