Home > Press > BioNanomatrix Receives New NCI Grant to Support Development of Chip-Based Nanofluidics Systems for Cell Fractionation
Abstract:
- STTR Grant will Support Development of Advanced Sample Sorting Capabilities and Enhancements in Chip Diagnostics and Research -
BioNanomatrix, Inc., today announced that the company and Princeton University are recipients of a new Small Technology Transfer Research (STTR) grant from the National Cancer Institute (NCI) of the U.S. National Institutes of Health (NIH). The two-year, $200,000 grant is focused on development of integrated fluidics systems for the front end sample sorting component of the BioNanomatrix
whole genome analytic platform. The goal of the project is to develop integrated systems that can separate out and sort whole chromosomes from a single cell or multiple cells. This type of cell fractionation is a key early step in the analytic process.
"This new NCI grant will enable us to continue to collaborate with
Princeton researchers to develop enhanced front-end capabilities for our
analytic platform," said Han Cao, Ph.D., chief scientific officer of
BioNanomatrix.
BioNanomatrix is developing pioneering integrated systems that enable
nanoscale single molecule identification and analysis of the entire genome,
delivering single molecule sensitivity in a highly parallel format. The
company's patented analytic platform based on this technology provides
rapid, comprehensive and cost effective ultra-high resolution analyses of
DNA.
"The core BioNanomatrix nanofluidics technology was originally
developed at Princeton and we look forward to continuing to collaborate to
further develop its utility for applications in both biomedical research
and clinical medicine," said Professor James Sturm, co-investigator of the
project and William and Edna Macaleer Professor of Engineering and Applied
Science, Professor of Electrical Engineering and Director of the Princeton
Institute for the Science and Technology of Materials (PRISM) at Princeton
University.
The ability of this technology to deliver single molecule sensitivity
in a highly standardized parallel format with minimal processing is
expected to significantly reduce the cost and time needed for the extensive
data and integrative analyses that have hindered widespread use of whole
genome studies to date. This project will enable sorting of sub-cellular
components by size, such as chromosomes prior to their isolation in
nanofluidic channels, so that a number of analyses, including sequencing,
mapping and epigenetics can be performed in a real-time, dynamic, bench-top
format.
####
About BioNanomatrix, Inc.
BioNanomatrix is developing breakthrough nanoscale whole genome imaging
and analytic platforms for applications in clinical genetics, cancer
diagnostics and other biomedical applications. The company is applying its
expertise in nanochips, nanodevices and nanosystems to develop its patented
platform technology to provide fast, comprehensive, and low-cost analysis
of genomic, epigenomic and proteomic information with sensitivity at the
single cell/single molecule level. BioNanomatrix' technologies are licensed
exclusively from Princeton University. Founded as a spin-out of Princeton
University in 2003, the company is headquartered in Philadelphia,
Pennsylvania.
For more information, please click here
Contacts:
Media
GendeLLindheim BioCom Partners
Barbara Lindheim
212 918-4650
Copyright © PR Newswire Association LLC.
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||