Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > BioNanomatrix Receives New NCI Grant to Support Development of Chip-Based Nanofluidics Systems for Cell Fractionation

Abstract:
- STTR Grant will Support Development of Advanced Sample Sorting Capabilities and Enhancements in Chip Diagnostics and Research -

BioNanomatrix Receives New NCI Grant to Support Development of Chip-Based Nanofluidics Systems for Cell Fractionation

PHILADELPHIA, PA | Posted on September 24th, 2007

BioNanomatrix, Inc., today announced that the company and Princeton University are recipients of a new Small Technology Transfer Research (STTR) grant from the National Cancer Institute (NCI) of the U.S. National Institutes of Health (NIH). The two-year, $200,000 grant is focused on development of integrated fluidics systems for the front end sample sorting component of the BioNanomatrix
whole genome analytic platform. The goal of the project is to develop integrated systems that can separate out and sort whole chromosomes from a single cell or multiple cells. This type of cell fractionation is a key early step in the analytic process.

"This new NCI grant will enable us to continue to collaborate with
Princeton researchers to develop enhanced front-end capabilities for our
analytic platform," said Han Cao, Ph.D., chief scientific officer of
BioNanomatrix.

BioNanomatrix is developing pioneering integrated systems that enable
nanoscale single molecule identification and analysis of the entire genome,
delivering single molecule sensitivity in a highly parallel format. The
company's patented analytic platform based on this technology provides
rapid, comprehensive and cost effective ultra-high resolution analyses of
DNA.

"The core BioNanomatrix nanofluidics technology was originally
developed at Princeton and we look forward to continuing to collaborate to
further develop its utility for applications in both biomedical research
and clinical medicine," said Professor James Sturm, co-investigator of the
project and William and Edna Macaleer Professor of Engineering and Applied
Science, Professor of Electrical Engineering and Director of the Princeton
Institute for the Science and Technology of Materials (PRISM) at Princeton
University.

The ability of this technology to deliver single molecule sensitivity
in a highly standardized parallel format with minimal processing is
expected to significantly reduce the cost and time needed for the extensive
data and integrative analyses that have hindered widespread use of whole
genome studies to date. This project will enable sorting of sub-cellular
components by size, such as chromosomes prior to their isolation in
nanofluidic channels, so that a number of analyses, including sequencing,
mapping and epigenetics can be performed in a real-time, dynamic, bench-top
format.

####

About BioNanomatrix, Inc.
BioNanomatrix is developing breakthrough nanoscale whole genome imaging
and analytic platforms for applications in clinical genetics, cancer
diagnostics and other biomedical applications. The company is applying its
expertise in nanochips, nanodevices and nanosystems to develop its patented
platform technology to provide fast, comprehensive, and low-cost analysis
of genomic, epigenomic and proteomic information with sensitivity at the
single cell/single molecule level. BioNanomatrix' technologies are licensed
exclusively from Princeton University. Founded as a spin-out of Princeton
University in 2003, the company is headquartered in Philadelphia,
Pennsylvania.

For more information, please click here

Contacts:
Media
GendeLLindheim BioCom Partners
Barbara Lindheim
212 918-4650

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project