Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > INBT Grant Proposal Service: Formula for Funding Success

Abstract:
To support their research endeavors, scientists must rely on the grant support they receive from institutions such as the National Institutes of Health (NIH) and the National Science Foundation (NSF).

INBT Grant Proposal Service: Formula for Funding Success

Baltimore, MD | Posted on September 17th, 2007

The application process for these grants is a tedious and time consuming process, which in the multidisciplinary field of nanobiotechnology, often involves scientists from different fields of expertise. These collaborations add an extra level of difficulty to the already lengthy of submitting a successful proposal.

In an effort to maximize the possibilities for nanobiotechnology research at Johns Hopkins University, the Institute for NanoBioTechnology (INBT) not only brings faculty together but offers them help to prepare and submit nanobiotechnology related proposals.

"It's a great service we offer that fits in with the goal of the Institute," says Sue Porterfield, administrative manager at INBT. "Most of these multidisciplinary grants would take the faculty and their department administrators a lot of time to prepare."

Porterfield is the main force behind the proposal service. She estimates that she spends about 75 percent of her time preparing, submitting, and eventually administering the nanobio grants submitted through INBT.

Apparently, Porterfield has developed an effective system. Since the INBT's launched in May 2006, 36 percent of the proposals submitted through fiscal year 2007 were successfully awarded. (For comparison, the national average of awarded proposals from both NIH and NSF is closer to 20 percent.)

The numbers also show INBT's cross divisional dimensions. Thirty-four faculty members acted as primary investigators (PIs) or co-PIs, representing four different divisions within Johns Hopkins University: the School of Medicine, the Bloomberg School of Public Health, the Krieger School of Arts and Sciences, and the Whiting School of Engineering.

If you would like to learn more about the grant proposal service or funding opportunities through INBT, contact Sue Porterfield at .

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University will revolutionize health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 140 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:

* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218
* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Sue Porterfield

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project