Home > News > A case where Born-Oppenheimer Approximation breaks down
September 3rd, 2007
A case where Born-Oppenheimer Approximation breaks down
Abstract:
The Born-Oppenheimer (BO) Approximation is ubiquitous in molecular physics, quantum chemistry and quantum chemistry. However, Chinese Academy of Sciences (CAS) researchers recently observed a breakdown of the Approximation in the reaction of fluorine with deuterium atoms. The result has been published in the August 24 issue of Science.
Proposed in 1927 by Max Born and Julius R. Oppenheimer, the BO approximation suggests that since nuclei are so much more massive than electrons, they must move much more slowly. Hence the motions of the two can be separated (the nuclei can be considered as stationary points around which the electrons move). It is still indispensable in quantum chemistry and used for the establishment of a molecular dynamic model for a simple chemical or physical system.
Source:
nanowerk.com
| Related News Press |
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Quantum nanoscience
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||