MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Yale Scientists Use Nanotechnology to Fight E. coli

E.coli incubated for one hour on support matrix in the absence (1) or in the presence (2) of nanotubes. (Elimelech/Yale)
E.coli incubated for one hour on support matrix in the absence (1) or in the presence (2) of nanotubes. (Elimelech/Yale)

Abstract:
Single-walled carbon nanotubes (SWCNTs) can kill bacteria like the common pathogen E. coli by severely damaging their cell walls, according to a recent report from Yale researchers in the American Chemical Society (ACS) journal Langmuir.

Yale Scientists Use Nanotechnology to Fight E. coli

NEW HAVEN, CT | Posted on September 3rd, 2007

"We began the study out of concerns for the possible toxicity of nanotubes in aquatic environments and their presence in the food chain," said Menachem Elimelech, professor and chair of chemical and environmental engineering at Yale and senior author on the paper. "While nanotubes have great promise for medical and commercial applications there is little understanding of how they interact with humans and the environment."

"The nanotubes are microscopic carbon cylinders, thousands of times smaller than a human hair that can be easily taken up by human cells," said Elimelech. "We wanted to find out more about where and how they are toxic."

This "nanoscience version of a David-and-Goliath story" was hailed in an ACS preview of the work as the first direct evidence that "carbon nanotubes have powerful antimicrobial activity, a discovery that could help fight the growing problem of antibiotic resistant infections."

Using the simple E. coli as test cells, the researchers incubated cultures of the bacteria in the presence of the nanotubes for up to an hour. The microbes were killed outright - but only when there was direct contact with aggregates of the SWCNTs that touched the bacteria. Elimelech speculates that the long, thin nanotubes puncture the cells and cause cellular damage.

The study ruled out metal toxicity as a source of the cell damage. To avoid metal contaminants in commercial sources, the SWCNTs were rigorously synthesized and purified in the laboratory of co-author Professor Lisa Pfefferle.

"We're now studying the toxicity of multi-walled carbon nanotubes and our preliminary results show that they are less toxic than SWCNTs," Elimelech said. "We are also looking at the effects of SWCNTs on a wide range of bacterial strains to better understand the mechanism of cellular damage."

Elimelech projects that SWCNTs could be used to create antimicrobial materials and surface coatings to improve hygiene, while their toxicity could be managed by embedding them to prevent their leaching into the environment.

Other authors on the paper are Seoktae Kang and Mathieu Pinault. The project was funded by a research grant from the National Science Foundation.

Citation: Langmuir 23(17): 8670-8673 (August 28, 2007).

####

About Yale University
Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

For more information, please click here

Contacts:
Janet Rettig Emanuel
203-432-2157
janet.emanuel@yale.edu

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project