Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Nanotechnology is key to next-generation tissue and cell engineering

August 27th, 2007

Nanotechnology is key to next-generation tissue and cell engineering

Abstract:
In the medical field there is a huge demand for tissue regeneration technologies, which covers a wide range of potential applications in such areas as cartilage, vascular, bladder and neural regeneration. Just consider the need for bone and dental implants: Each year, almost 500,000 patients receive hip implants worldwide, about the same number need bone reconstruction due to injuries or congenital defects and 16 million Americans loose teeth and may require dental implants. The market for medical implant devices in the U.S. alone is estimated to be $23 billion per year and it is expected to grow by about 10% annually for the next few years. Unfortunately, medical implant devices have been associated with a variety of adverse reactions, including inflammation and fibrosis. It has been suggested that poor tissue integration is responsible for loosening of implants and mechanical damage to the surrounding host tissues. Based on an expanding body of biomedical nanotechnology research work, there is a growing consensus among scientists that nanostructured implant materials may have many potential advantages over existing, conventional ones. The key, as indicated in a number of findings, seems to be that physical properties of materials, especially with regard to their surface's nanostructure, affect cell attachment and eventually the tissue response to the implant. Although nanotopography mediated cell responses have been shown in previous work, the mechanism of these responses is mostly undetermined. New research has now been conducted to determine the influence of nanopore size on cellular responses. Interestingly, these studies have revealed that larger nanopores (200 nm) trigger DNA replication and cell proliferation via various signal transduction pathways.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project