Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotube Formation: Researchers Learn to Control Dimensions of Inorganic Metal Oxide Nanotubes

Sankar Nair, an assistant professor in the Georgia Tech School of Chemical and Biomolecular Engineering, holds a model showing the structure of metal oxide nanotubes he is developing. The research could lead to a technique for precisely controlling the dimensions of the structures.

Georgia Tech Photo: Gary Meek
Sankar Nair, an assistant professor in the Georgia Tech School of Chemical and Biomolecular Engineering, holds a model showing the structure of metal oxide nanotubes he is developing. The research could lead to a technique for precisely controlling the dimensions of the structures.

Georgia Tech Photo: Gary Meek

Abstract:
Moving beyond carbon nanotubes, researchers are developing insights into a remarkable class of tubular nanomaterials that can be produced in water with a high degree of control over their diameter and length. Based on metal oxides in combination with silicon and germanium, such single-walled inorganic nanotubes could be useful in a range of nanotechnology applications that require precise control over nanotube dimensions.

Nanotube Formation: Researchers Learn to Control Dimensions of Inorganic Metal Oxide Nanotubes

Atlanta, GA | Posted on August 23rd, 2007

At the Georgia Institute of Technology, researchers are studying the formation of these metal oxide nanotubes to understand the key factors that drive the emergence of nanotubes with specific diameters and lengths from a "soup" of precursor chemicals dissolved in water. Their goal is to develop general guidelines for controlling nanotube diameter with sub-nanometer precision and nanotube length with precision of a few nanometers.

So far, the researchers have obtained encouraging results with a model system that produces aluminosilicogermanate (AlSiGeO) nanotubes. The research, which was presented August 23rd at the 234th National Meeting of the American Chemical Society, could open the door for developing a more general set of chemical "rules" for dimensional control of nanotubes that could lead to a range of new applications for inorganic nanotubes and other nanometer-scale materials. The research has been sponsored by the American Chemical Society Petroleum Research Fund.

"We have shown that there is a clearly quantifiable molecular-level structural and thermodynamic basis for tuning the diameter of these nanotubes," said Sankar Nair, an assistant professor in Georgia Tech's School of Chemical and Biomolecular Engineering. "We're interested in developing the science of these materials to the point that we can manipulate their curvature, length and internal structure in a sophisticated way through inexpensive water-based chemistry under mild conditions."

Using chemical reactions carried out in water at less than 100 degrees Celsius, Nair's research team - which included graduate students Suchitra Konduri and Sanjoy Mukherjee - varied the germanium and silicon content during the nanotube synthesis and then quantitatively characterized the resulting nanotubes with a variety of analytical techniques to show a clear link between the nanotube composition and diameter. Simultaneously, the group's molecular dynamics calculations showed a strong correlation between the composition, diameter and internal energy of the material.

"There appear to be energy minima that favor or stabilize certain nanotube diameters because they have the lowest energy, and those stable diameters change with the composition of the material," said Nair. "This shows that the nanotube dimensions are not just a fortuitous coincidence of the many synthesis parameters, but that there is an underlying thermodynamic basis arising from the subtle balance of interatomic forces within the material."

Specifically, the molecular dynamics simulations - which are corroborated by the experiments - show that the variation of germanium and silicon content causes sheets of aluminum hydroxide to form nanotubes with diameters ranging from 1.5 to 4.8 nanometers and lengths of less than 100 nanometers. If that turns out to be a general principle applicable to other metal oxides, it could be used to dramatically expand the catalog of nanotube structures available.

Once the researchers fully understand the factors affecting the formation of nanotubes from aluminosilicogermanate materials, they hope to apply similar principles to other metal oxides. The ultimate goal will be an ability to predictably vary the dimensions of nanotubes - and potentially other useful nanostructures - employing different chemical process conditions across a broader range of metal oxide materials.

"One can get a large range of useful properties with metal oxide materials," Nair noted. "Almost all metals form oxides and many of them form layered sheet-like oxides, so if one can coax them into nanotube form with dimensions comparable to single-walled carbon nanotubes, the range of useful properties would be great."

Controlling the dimensions of nanostructures is critical because properties such as electronic band-gap depend strongly upon the dimensions. Dimension control has proven to be difficult in carbon nanotube fabrication processes, leading to an entire area of research focused on purifying nanotubes of specific dimensions from an initial mixture of different sizes.

"If we are able to produce single-walled nanotubes of specific and controllable diameter with inexpensive water-based chemistry, devices based on them would perform in a consistent and predictable manner," Nair explained. "If we could synthesize the same nanotube structure with predictably different diameters and lengths, we could tune the properties like the band-gap across a wide range. We could even get a limited toolbox of materials to do many different things."

Though the chemical reactions that produce the metal oxide nanotubes are complicated, they occur over a period of days at low temperatures and can be carried out with simple laboratory apparatus. That facilitates control over processing conditions and allows the researchers to track many different aspects of the reaction with a variety of characterization tools.

"There is a lot of complex chemistry that can be done in the aqueous phase, which motivated us to understand the processes by which metal ions dissolved in water organize themselves together with oxygen into specific nanotubular arrangements, perhaps aided by water and other species present in the solution," Nair added.

The metal oxide nanotubes have properties very different from those of carbon nanotubes, which have been studied heavily since they were discovered in the 1990s. "For example, the materials that we are working with are much more hydrophilic than carbon and can load nearly 50 percent of their weight with water," Nair explained. "There is a whole range of behavior in oxide nanotubes that we cannot explore with carbon-based materials."

Other recent results of the group's research were published May 5 in the Journal of the American Chemical Society, and have also been reported in the journals Physical Review B and Chemistry of Materials.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked eighth among U.S. News & World Report's top public universities, Georgia Tech's 17,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
RESEARCH NEWS & PUBLICATIONS OFFICE
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

MEDIA RELATIONS CONTACT:
John Toon
(404-894-6986)


TECHNICAL CONTACT:
Sankar Nair
(404-894-4826)

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project