Home > News > Watching an object go quantum
August 22nd, 2007
Watching an object go quantum
Abstract:
Build a pendulum small enough, and it will violate Newton's classical laws of mechanics, following quantum rules instead. Some researchers hope to observe such violations by cooling a tiny wobbling object to very low temperatures. A team of theorists has now analyzed a vibrating bar, both classically and quantum mechanically, and predicted the signatures of quantum behavior that experimenters might observe, as they report in the 27 July Physical Review Letters ("Signatures for a Classical to Quantum Transition of a Driven Nonlinear Nanomechanical Resonator"). What's more, the team found that such a classical-to-quantum transition is within reach of current technology. They hope that experiments on small moving objects will soon shed light on a deep question: why do large objects obey classical laws?
Source:
nanowerk.com
Related News Press |
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Quantum nanoscience
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |