Home > Press > New Grant Boosts Work on Small-scale Systems
Research in IMPACT will focus on development of CAD systems that are based on physical models to predict the behavior of MEMS devices. |
Abstract:
Researchers at the Georgia Institute of Technology have received a Defense Advanced Research Projects Agency (DARPA) award to participate in a multi-university research center that will develop a computer-aided design (CAD) environment for micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS).
The new research center - to be called the Investigate Multi-physics Modeling and Performance Assessment-driven Characterization and Computation Technology (IMPACT) Center for Advancement of MEMS/NEMS VLSI—will be led by the University of Illinois at Urbana-Champaign and will include teams from Purdue University and Lehigh University as well as Georgia Tech. A consortium of companies - including BAE Systems, Inc., Innovative Design & Technology, MEMtronics Corp., Raytheon Co., Rockwell Collins Inc. and the Rogers Corp. - will also participate financially with DARPA in the center.
Georgia Tech's share of the research will be conducted by a team associated with the Georgia Tech School of Electrical and Computer Engineering (ECE).
The research will seek to develop CAD systems that are based on physical models and therefore can conclusively predict the behavior of MEMS devices. Eventually engineers developing systems with MEMS devices could use a simple drag-and-drop interface to simulate not only the electrical effects of MEMS usage, but also thermal, mechanical and reliability aspects as well.
"This kind of predictive capability could greatly increase the speed with which MEMS-enabled microsystems can be developed," said John Papapolymerou, an associate professor in ECE.
Initially, Papapolymerou said, Georgia Tech will receive about $1.25 million for a six-year effort. However, as more companies join the center, that amount is likely to increase, he added.
In the first year Georgia Tech's efforts will focus on the fundamental physics of MEMS devices - particularly with respect to dielectric charging of MEMS switches, Papapolymerou said.
Although MEMS-enabled microsystems have the potential to revolutionize communications, sensors and signal-processing, he said, their capabilities have been limited by a lack of understanding of how physical phenomena govern MEMS-device functionality. It's particularly unclear how much performance is degraded when MEMS devices are exposed to the operating conditions of a integrated circuit.
"When we have a better understanding of the fundamental physics of MEMS devices, we can then proceed to the higher-order models and levels that are required to develop a CAD program," Papapolymerou said.
The ultimate goal of the IMPACT center, he said, will be to promote the availability of MEMS/NEMS-based micro- and nanosystems in military and commercial applications.
"This is meant to be a dynamic center," Papapolymerou said. "The idea is going to be to expand this in the future, so we can also expand the number of research problems that we undertake."
This research is sponsored by the Defense Advanced Research Projects Agency (DARPA). The content of this article does not necessarily reflect the position or the policy of the U.S. Government, and no official endorsement should be inferred.
####
About Georgia Tech
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked eighth among U.S. News & World Report's top public universities, Georgia Tech's 17,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.
For more information, please click here
Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA
Rick Robinson
Research News & Publications
404-694-2284
or
John Toon
(404-894-6986)
or
Jackie Nemeth
(404-894-2906)
Copyright © Georgia Tech
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
NEMS
IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018
UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018
Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018
One string to rule them all April 17th, 2018
MEMS
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||