Home > News > Snapshots of electrons
August 13th, 2007
Snapshots of electrons
Abstract:
No flash of light can be shorter than the time it takes the wave carrying the flash to perform a full oscillation. A team headed by Prof. Ferenc Krausz, Director, Max Planck Institute of Quantum Optics in Munich, Germany, has now succeeded in generating - for the first time - flashes of intense laser light that deliver more than half of their energy within a single wellcontrolled wave cycle. Atoms exposed to this extreme light pulse emit an attosecond X-ray pulse (1 attosecond = one billionth of a billionth of a second) whose wave components, if oscillating more slowly, would represent nearly all colours of visible light, all the way from blue through green and yellow to red. The resultant "white" pulse has an expected duration of about 100 attoseconds and is composed of more than a million X-ray photons. Therefore, it is brief enough, and powerful enough to capture the motion of electrons moving on molecular orbitals. Real-time observation of the electrons that bind atoms together will provide invaluable insight into the microscopic origin of the formation and deformation of molecules. The results were reported in the July issue of New Journal of Physics and featured on the cover of Science (August 10, 2007).
Source:
nanowerk.com
Related News Press |
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |