Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Emory physicist opens new window on glass puzzle

Abstract:
When most people look at a window, they see solid panes of glass, but for decades, physicists have pondered the mysteries of window glass: Is glass a solid, or merely an extremely slow moving liquid" An Emory University research team led by physicist Eric Weeks has yielded another clue in the glass puzzle, demonstrating that, unlike liquids, glasses aren't comfortable in confined spaces.

Emory physicist opens new window on glass puzzle

Atlanta, GA | Posted on August 9th, 2007

The Emory team's findings are reported in the paper "Colloidal glass transition observed in confinement," published in the Physical Review Letters July 13. The Emory research adds to the evidence that some kind of underlying structure is involved in glass transition, Weeks says. "This provides a simple framework for looking at other questions about what is really changing during the transition."

Weeks has devoted his career to probing the mysteries of "squishy" substances that cannot be pinned down as a solid or liquid. Referred to as "soft condensed materials," they include everyday substances such as toothpaste, peanut butter, shaving cream, plastic and glass.

Scientists fully understand the process of water turning to ice. As the temperature cools, the movement of the water molecules slows. At 32 F, the molecules form crystal lattices, solidifying into ice. In contrast, the molecules of glasses do not crystallize. The movement of the glass molecules slows as temperature cools, but they never lock into crystal patterns. Instead, they jumble up and gradually become glassier, or more viscous. No one understands exactly why.

"One idea for why glass gets so viscous is that there might be some hidden structure," says Weeks, associate professor of physics. "If so, one question is what size is that structure""

The Emory Physics lab began zeroing in on this question two years ago when Hetal Patel, an undergraduate who was majoring in chemistry and history, designed a wedge-shaped chamber, using glue and glass microscope slides that allowed observation of single samples of glassy materials confined at decreasing diameters.

For samples, the Emory lab used mixtures of water and tiny plastic balls - each about the size of the nucleus of a cell. This model system acts like a glass when the particle concentration is increased.

The samples were packed into the wedge-shaped chambers, then placed in a confocal microscope, which digitally scanned cross-sections of the samples, creating up to 480 images per second. The result was three-dimensional digital movies, showing the movement and behavior of the particles over time, within different regions of the chamber.

"The ability to take microscopy movies has greatly improved during the past five to 10 years," Weeks says. "Back in the mid-90s, the raw data from one two-hour data set would be four gigabytes. It would have completely filled up your hard drive. Now, it's just a tiny part of your hard drive, like a single DVD."

Two students collected and analyzed the data: Carolyn "Carrie" Nugent Ð an undergraduate from Bucknell University who worked in the Emory Physics Lab during two summers Ð and Kazem Edmond, currently an Emory graduate student in the Department of Physics.

The data showed that the narrower the sample chamber, the slower the particles moved and the closer they came to being glass-like. When the researchers increased the particle concentration in the samples, the confinement-induced slowing occurred at larger plate separations. The dimension between the plates at which the particles consistently slowed their movement was 20 particles across.

"It's like cars and traffic jams," Weeks says. "If you're on the highway and a few more cars get on, you don't really care because you can still move at the same speed. At 3 p.m., traffic gets worse and you may slow down a little bit. But at some point, your speed has to go from 40 mph to 5 mph. That's kind of what's happening with glass."

Previous research has shown groups of particles in dense suspensions move cooperatively. "Our work suggests glasses are solid-like because these groups can't move when the sample chamber is thinner than the typical size of these groups," Weeks says. "These experiments help us understand earlier work done with thin polymer films and other glassy materials, but as we use particles rather than atoms, we get to directly see how confinement influences the glass transition."

Nanotechnology is one example of a field that can benefit from research into the behavior of colloidal glass and plastics in tight spaces. "When making machines as small as a cell, people have found that they're even more fragile than you might expect," Weeks said. "One interesting thing is that small plastic structures become more fragile because, when they are really tiny, they're less glassy."

####

About Emory University
Emory University is one of the nation's leading private research universities and a member of the Association of American Universities. Known for its demanding academics, outstanding undergraduate college of arts and sciences, highly ranked professional schools and state-of-the-art research facilities, Emory is ranked as one of the country's top 20 national universities by U.S. News & World Report. In addition to its nine schools, the university encompasses The Carter Center, Yerkes National Primate Research Center and Emory Healthcare, the state's largest and most comprehensive health care system.

Subscribe to RSS feeds for automatic updates of the latest news at Emory.

For more information, please click here

Contacts:
Beverly Clark

404-712-8780

Copyright © Emory University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project