Home > News > Novel bioreactor to repair vocal chords
July 31st, 2007
Novel bioreactor to repair vocal chords
Abstract:
Damaged or diseased vocal cords can forever change and even silence the voices we love, from a family member's to a famous personality's.
Julie Andrews, who starred in such classics as The Sound of Music, is among the professional singers who have undergone surgery to remove callus-like growths that can form from overuse of these two small, stretchy bands of tissue housed in the larynx, or voice box. Sadly, Andrews may never fully recover her singing voice after surgery on her vocal cords in 1997.
Engineering pliable, new vocal cord tissue to replace scarred, rigid tissue in these petite, yet powerful organs is the goal of a new University of Delaware research project. It is funded by a five-year, $1.8 million grant from the National Institutes of Health's National Institute on Deafness and Other Communication Disorders.
Xinqiao Jia, UD assistant professor of materials science and engineering, is leading the project. Jia's research focuses on developing intelligent biomaterials that closely mimic the molecular composition, mechanical responsiveness and nanoscale organization of natural extracellular matrices--the structural materials that serve as scaffolding for cells. These novel biomaterials, combined with defined biophysical cues and biological factors, are being used for functional tissue regeneration.
Source:
nanowerk.com
Related News Press |
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Human Interest/Art
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |