Home > News > AFM tip feels nano-surfaces
July 30th, 2007
AFM tip feels nano-surfaces
Abstract:
Scientists in the US have developed an 'artificial fingertip' that boosts the resolution of atomic force microscopy, a technique that opens a window onto the nanoscale world. The tip can also assess the mechanical properties of the surface, determining whether the substance is soft, stiff or sticky.
Atomic force microscopes work by moving a sharp tip along the surface, touching each atom one by one. The tip is mounted on a cantilever that jiggles as it moves over the surface, rather like the arm on a record player. This movement can be translated into a topographic map of the surface. But it's a slow process, taking around one second per atom scanned.
Source:
rsc.org
Related News Press |
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |