Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Who Are You? Gold Nanorods Identify Metastatic Tumor Cells

Abstract:
Using a series of gold nanorods, each with its own characteristic optical signature, researchers at Purdue University have developed a method for rapidly assaying the cellular composition of breast tumors. This assay technique could provide oncologists with a more accurate assessment of the metastatic potential of an individual's cancer.

Who Are You? Gold Nanorods Identify Metastatic Tumor Cells

Bethesda , MD | Posted on July 23rd, 2007

One important finding to come out of cancer research laboratories over the past few years is that tumors comprise many types of cells and that only a small proportion—the cancer stem cells—are responsible for the unlimited growth potential of a malignant tumor. Based on these findings, researchers have since identified a variety of cell surface markers on different types of breast cancer cells that may be predictive of a tumor's ability to metastasize.

Reporting its work in the journal Nano Letters, a team of investigators led by Joseph Irudayaraj, Ph.D., developed a new technique for making biocompatible gold nanorods of various sizes to which they could then attach antibodies. Gold nanorods interact with light to produce plasmons, a wave-like motion of electrons on the surface of the nanorods. Depending on the ratio of a nanorod's length to its diameter, these plasmons trigger light emission at a specific frequency that is easily detected using surface plasmon resonance spectroscopy.

To each nanorod of a given length and diameter, the researchers attached an antibody that recognizes one specific cancer cell surface marker. The researchers also prepared a gold nanorod-antibody construct that recognizes a biomarker found on all cell surfaces to serve as an internal reference control that would enable them to calculate relative amounts of the various tumor markers on a given cancer cell.

Using a panel of three different antibody-labeled gold nanorods, the investigators were able to characterize breast tumors according to their cellular composition and correlate their findings to the metastatic potential of each given cell type. These results were validated using flow cytometry, the standard, but laborious, technique used to classify cells according to surface markers. The researchers note that they could have monitored as many as 15 different antibody-nanorod constructs simultaneously.

This work is detailed in the paper "Identity profiling of cell surface markers by multiplex gold nanorod probes." Investigators from Indiana University School of Medicine and the Walther Cancer Institute also participated in this study. An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of eliminating suffering and death due to cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project