Home > News > Nanoparticle-enabled peptide delivery triggers tumor regression
June 15th, 2007
Nanoparticle-enabled peptide delivery triggers tumor regression
Abstract:
Cells possess a variety of ways of dealing with mutations that can cause them to grow uncontrollably and eventually form a tumor. The tumor suppressor gene p53 plays a critical role in these cancer prevention processes, largely by triggering a form a cell death known as apoptosis.
Many research groups are working to develop strategies for boosting p53 levels in precancerous and malignant cells. However, since approximately half of all cancers have mutations that prevent p53 from triggering apoptosis, these approaches are limited in their effectiveness in treating cancer.
To overcome the mechanisms that cancer cells develop to circumvent p53's efforts to kill those cells, a team of investigators at the Beatson Institute for Cancer Research in Glasgow, Scotland, have turned to a related gene, known as p73, that also trigger apoptosis by a more circuitous but equally effective biochemical process. In a study published in the Journal of Clinical Investigation, this team, led by Kevin Ryan, Ph.D., found that a protein designed to turn on p73, delivered to tumors using a nanoparticle, kills both primary tumor cells and those that have spread from the original tumor.
Source:
news-medical.net
Related News Press |
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |