Home > Press > Microbes at work cleaning up the environment
Abstract:
It may sound counterintuitive to use a microbial protein to improve water quality.
But some bacteria are doing just that to protect themselves from potentially toxic nanoparticles in their own environments, and clean up crews of the future could potentially do the same thing on a larger scale.
A team from Lawrence Livermore National Laboratory, UC Berkeley and Lawrence Berkeley National Laboratory found that bacteria from an abandoned mine excrete proteins that cause metal nanoparticles to aggregate. The bacteria are binding and immobilizing the metals in the nanoparticles and the nanoparticles themselves, which are potentially toxic to the bacteria.
Sulfate-reducing bacteria can cause heavy metals such as zinc (Zn) to precipitate and form nanoparticles. However, these particles are able to move freely because they are so small (typically 2-6 nanometers in diameter) and can redissolve if conditions change.
In the case of the mine bacteria, the researchers showed that the bacteria are causing the nanoparticle aggregation, thereby protecting themselves. When the metal nanoparticles aggregate, they don't move as easily and are less soluble.
Using secondary ion mass spectrometry, transmission electron microscopy and infra-red spectroscopy, the scientists were able to study whether protein contributes to the formation of densely aggregated nanoparticulate zinc sulfide spheroids.
They also studied whether various amino acids induce rapid aggregation in metal-sulfide nanoparticles.
The answer was yes in both cases.
"This demonstrates an extracellular biomineralization mechanism that is unexpected because it involves the bacteria excreting proteins for nanoparticle aggregation away from the cells," said Peter Weber, one of the LLNL authors of the paper appearing in the June 15 edition of the journal Science.
Weber and LLNL colleague Ian Hutcheon used LLNL's NanoSIMS (high- resolution secondary ion mass spectrometer) to study the metal-sulfide nanoparticle aggregation in sulfate-reducing bacteria dominated biofilms collected from the Piquette Mine, a flooded system in southwestern Wisconsin.
The team found that organic nitrogen was highly concentrated in all of the zinc-sulfide aggregates, indicating a high protein or polypeptide content relative to inorganic zinc-sulfide minerals. In combination with the other techniques and experiments, the team concluded that the protein caused the zinc-sulfide nanoparticle aggregation.
The researchers conducted experiments guided by known bacterial metal-binding proteins that bind zinc and other potentially toxic metals at cysteine locales. Cysteine is a sulfur-containing amino acid. Amino acids are the building blocks of proteins.
The researchers found that inorganic aggregation of zinc-sulfide initially occurred rapidly to 100-nanometer diameter aggregates but then slowed or ceased after one week. However, zinc-sulfide nanoparticles in the presence of cysteine displayed more extensive and prolonged aggregation, accumulating up to 1-10 micron (1/1000th of a millimeter)-sized structures.
"Potentially we can use cysteine or cysteine-rich polypeptides or proteins for nanoparticle clean up," Weber said. "With the boom in nanoscience, people are naturally asking questions about the potential environmental impacts. Here, we see that naturally produced nanoparticles can be naturally controlled."
####
About DOE/Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.
For more information, please click here
Contacts:
Anne Stark
925-422-9799
Copyright © DOE/Lawrence Livermore National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Human Interest/Art
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||