Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > How to Grow Glass Nanotubes, Naturally

May 30th, 2007

How to Grow Glass Nanotubes, Naturally

Abstract:
Scientists from France have stumbled upon an interesting, almost spontaneous process to create silica nanotubes.

From the Centre National de la Recherche Scientifique announcement:

The vertebral skeleton is probably the most remarkable example of the efficiency of living organisms in forming robust structures which closely combine organic and mineral materials, in this case calcium phosphate. However, in the submarine environment, numerous and frequently single-cell organisms can achieve similar exploits by using silica to produce carapaces and spines to protect themselves, or spicules that are fibers which direct light to their neurons as effectively as the best optical fibers. With a complex architecture and shape, these natural structures are even more astonishing in that they develop spontaneously in water under moderate conditions of temperature and pressure, according to mechanisms which are still largely unknown. This feat is a dream for chemists who are often obliged to heat, extrude or compress materials under aggressive conditions in order to endow them with a shape.

Source:
medgadget.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project