Home > News > Nanoparticles could have a negative effect on plant growth
March 27th, 2007
Nanoparticles could have a negative effect on plant growth
Abstract:
Nanomaterials, with at least one dimension of 100 nanometers or less, are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Nanoparticles with a size of between 1 and 100 nanometers fall in the transitional zone between individual atoms (or molecules) and the bulk material. Because the physicochemical properties of material on this scale can greatly differ from the corresponding bulk material, these nanomaterials can have the potential to generate unknown biological effects in living cells. As the discussion on potentially undesired side effects of engineered nanoparticles heats up there is an increasing amount of nanotoxicology research that gets undertaken and published. However, very few studies have been conducted to assess the toxicity of nanomaterials to ecological terrestrial species, particularly plants. In order to develop a comprehensive toxicity profile for manufactured nanoparticles, their phytotoxicity - the ability to cause injury to plants - has to be investigated. A new study examined the effects of five types of nanoparticles on seed germination and root growth of six higher plant species and observed that several types of the particles had significant inhibition on seed germination and root growth of the six plants. If confirmed, these results are significant in terms of use and disposal of engineered nanoparticles.
Source:
nanowerk.com
Related News Press |
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
Human Interest/Art
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||