Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Smart fluid controlled with light

March 20th, 2007

Smart fluid controlled with light

Abstract:
Members of the Complex Fluids and Nanomaterials Group, at the University of Maryland have discovered a new class of "smart fluids" capable of switching from gel to liquid upon exposure to ultraviolet light.
A paper detailing the group's findings, titled "A simple class of photorheological fluids: Surfactant solutions with viscosity tunable by light," was recently published in the Journal of the American Chemical Society ("A Simple Class of Photorheological Fluids: Surfactant Solutions with Viscosity Tunable by Light"). The paper was authored by graduate students Aimee M. Ketner and Rakesh Kumar, alumnus Tanner S. Davies, undergraduate Patrick W. Elder, and professor Raghavan. It is already generating interest in the scientific community, most recently being discussed by Nature magazine's website, Chemical Processing magazine, Materials Today, and ScienceDaily.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project