Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > New Glass Bends Rule, but Doesn't Break It

March 10th, 2007

New Glass Bends Rule, but Doesn't Break It

Abstract:
In the past, researchers have created metallic glasses that can bend, just a bit, by mixing metal elements and tiny nanoparticles. Fractures in those materials tend to propagate until they run into a nanoparticle, where they are dispersed. Making such composites is difficult and costly. So, Wei Hua Wang, a physicist at the Chinese Academy of Science's Institute of Physics in Beijing, and his colleagues decided to look for a simpler solution. They played around with the composition of a long-known bulk metallic glass made from zirconium, aluminum, copper, and nickel. And they hit upon a simple recipe that yielded a mixture of hard, dense regions of the material surrounded by less dense soft zones. The result was that when the researchers then bent the material, fractures that began in one zone didn't propagate through the neighboring zones. So instead of one major crack fracturing the material, the glass dissipated the force into a multitude of tiny cracks and could bend even more than the previous composites.

Source:
sciencenow.sciencemag.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project