Home > News > Nanotube Dermatology
February 7th, 2007
Nanotube Dermatology
Abstract:
The process by which carbon nanotubes repair themselves has now been explained and modeled in detail. These tubes, sometimes only a nanometer or so in width but microns in length are among the toughest but also flexible materials known. And when they develop a tear, whether through irradiation or the application of extreme heat or strain, they are able to sew themselves back up without any leftover stitches or imperfections.
The way they do it, a new study conducted by scientists at Rice University shows, is through the propagation of a sort of sliding carbon-repair crew. The crew consists of a pentagon-heptagon phalanx of 10 carbon atoms moving along the tube, filling in the crack created by ejecting carbon atoms and rearranging local bondings as they go. The ejected carbons can either go away or they can be used in the repair work elsewhere (see figure at Physics News Graphics).
Source:
aip.org
Related News Press |
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |