Home > Press > Carnegie Mellon researcher proposes development of artificial cells to fight disease
Abstract:
Carnegie Mellon University's Philip LeDuc predicts the use of artificially created cells could be a potential new therapeutic approach for treating diseases in an ever-changing world. LeDuc, an assistant professor of mechanical and biomedical engineering, penned an article for the January edition of Nature Nanotechnology Journal about the efficacy of using man-made cells to treat diseases without injecting drugs.
This idea was developed by a team of researchers from disciplines including biology, chemistry and engineering during an exciting conference organized by the National Academies and the Keck Foundation for developing new disease-fighting approaches for the future.
"Our proposal is to use naturally available molecules to create pseudo-cell factories where we create a super artificial cell capable of targeting and treating whatever is ailing the body. The human cell is like a bustling metropolis, and we aim to tap the energy and diversity of the processes in a human cell to help the body essentially heal itself," LeDuc said.
Because the cell is an amazingly efficient system already, LeDuc and his team of researchers plan to use its microscopic package of tightly organized parts to improve medical treatment in diseases that exist in the body. According to LeDuc's journal article, the living cell operates much like a tiny industrial complex. His article proposes using the processes in a cell, such as the membrane, to create an enclosed functioning environment for a nanofactory. Then, by using other biologically inspired processes like molecular-binding and transport, the pseudo-cell can target, modify and deliver chemicals that the body needs to function properly.
In contrast to traditional drug-discovery ideas, where the product is delivered many times into the body, this journal article suggests using molecules that are already in the body and modifying these nanoscale systems to produce the biochemicals deficient in the body to help fight disease.
"Understanding both the nature of a cell as an independent unit and its role in the life processes of larger organisms is crucial in our quest to duplicate the molecular units which form the building blocks of the cell and its parts," LeDuc said. "We see this development of artificial cells as a building block for a variety of new and exciting therapeutic approaches."
####
About Carnegie Mellon
Carnegie Mellon is a global research university of more than 10,000 students and more than 4,000 faculty and staff, recognized for its world-class arts and technology programs, collaboration across disciplines and innovative leadership in education.
At Carnegie Mellon, our core values — innovation, creativity, problem-solving and collaborative teamwork — provide the foundation for everything we do.
For more information, please click here
Contacts:
Chriss Swaney
412-268-5776
Copyright © Carnegie Mellon
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Human Interest/Art
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |