Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Carnegie Mellon researcher proposes development of artificial cells to fight disease

Abstract:
Carnegie Mellon University's Philip LeDuc predicts the use of artificially created cells could be a potential new therapeutic approach for treating diseases in an ever-changing world. LeDuc, an assistant professor of mechanical and biomedical engineering, penned an article for the January edition of Nature Nanotechnology Journal about the efficacy of using man-made cells to treat diseases without injecting drugs.

Carnegie Mellon researcher proposes development of artificial cells to fight disease

PITTSBURGH, PA | Posted on February 7th, 2007

This idea was developed by a team of researchers from disciplines including biology, chemistry and engineering during an exciting conference organized by the National Academies and the Keck Foundation for developing new disease-fighting approaches for the future.

"Our proposal is to use naturally available molecules to create pseudo-cell factories where we create a super artificial cell capable of targeting and treating whatever is ailing the body. The human cell is like a bustling metropolis, and we aim to tap the energy and diversity of the processes in a human cell to help the body essentially heal itself," LeDuc said.

Because the cell is an amazingly efficient system already, LeDuc and his team of researchers plan to use its microscopic package of tightly organized parts to improve medical treatment in diseases that exist in the body. According to LeDuc's journal article, the living cell operates much like a tiny industrial complex. His article proposes using the processes in a cell, such as the membrane, to create an enclosed functioning environment for a nanofactory. Then, by using other biologically inspired processes like molecular-binding and transport, the pseudo-cell can target, modify and deliver chemicals that the body needs to function properly.

In contrast to traditional drug-discovery ideas, where the product is delivered many times into the body, this journal article suggests using molecules that are already in the body and modifying these nanoscale systems to produce the biochemicals deficient in the body to help fight disease.

"Understanding both the nature of a cell as an independent unit and its role in the life processes of larger organisms is crucial in our quest to duplicate the molecular units which form the building blocks of the cell and its parts," LeDuc said. "We see this development of artificial cells as a building block for a variety of new and exciting therapeutic approaches."

####

About Carnegie Mellon
Carnegie Mellon is a global research university of more than 10,000 students and more than 4,000 faculty and staff, recognized for its world-class arts and technology programs, collaboration across disciplines and innovative leadership in education.

At Carnegie Mellon, our core values — innovation, creativity, problem-solving and collaborative teamwork — provide the foundation for everything we do.

For more information, please click here

Contacts:
Chriss Swaney

412-268-5776

Copyright © Carnegie Mellon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Human Interest/Art

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project