Home > News > Manuscript Demonstrates DNA Delivery and Expression in the Mouse Retina
January 9th, 2007
Manuscript Demonstrates DNA Delivery and Expression in the Mouse Retina
Abstract:
Copernicus Therapeutics, Inc. announced today that a research team at University of Oklahoma Health Sciences Center, led by Dr. Muna Naash, professor of Cell Biology, demonstrated that Copernicus' DNA nanoparticles safely and effectively deliver and express DNA in the rods and cones of the mouse retina. According to Dr. Naash's team, current data indicate that greater than 95% of these retinal cells expressed the DNA nanoparticle and there was no evidence of toxicity. These findings, published on December 20, 2006 in the journal PLoS ONE, have significant implications for the development of DNA-based therapeutics for various eye disorders, including retinitis pigmentosa and macular degeneration company officials said.
"These exciting results suggest that genetic replacement therapy is feasible for various eye diseases," said Robert C. Moen, M.D., Ph.D., president and CEO of Copernicus. "The Copernicus DNA nanoparticle formulation is safe and effective and permits a non-viral approach to treat human disease by introducing a normal copy of the underlying gene that is responsible for the disease process. In addition to corrective therapy for genetic diseases such as retinitis pigmentosa, nucleic acid nanoparticles may provide effective treatments for more complex disorders such as diabetic retinopathy, macular degeneration, and various diseases that injure ganglion cells and the optic nerve."
Source:
businesswire.com
Related News Press |
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |