Home > Press > Are Diamond Nanoparticles Cytotoxic?
Abstract:
New research has brightened the prospects for using nanodiamonds as drug carriers, implant coatings, nanorobots and other medical applications that take advantage of diamond nanoparticles' attractive properties. The research is scheduled for publication Dec. 28 in ACS' weekly The Journal of Physical Chemistry B.
Liming Dai (University of Dayton), Saber M. Hussain (Wright-Patterson Air Force Base) and colleagues, including PhD student Amanda Schrand, explain that advances in technology have made a new generation of nanodiamonds available. Although diamond in bulk form is inert and biocompatible, nano-materials often behave differently than their bulk counterparts. That led to concern that diamond nanoparticles might have toxic effects on cells.
"We have for the first time assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm," the researchers state, adding that nanodiamonds were not toxic to a variety of different cell types. "These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types," they add.
####
About University of Dayton
The University of Dayton has evolved from a boarding school for boys carved out of fertile farmland more than 150 years ago into a top-tier national, private university and one of the 10 best Catholic universities in the nation. Discover why we're a university on the move.
For more information, please click here
Contacts:
Liming Dai, Ph.D.
University of Dayton
Dayton, Ohio
Phone: 937-229-2670/2679
Fax: 937-229-3433
Copyright © University of Dayton
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Safety-Nanoparticles/Risk management
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Human Interest/Art
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |