Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Window into the Deformation of Nanoscale Materials

August 14th, 2006

Window into the Deformation of Nanoscale Materials

Abstract:
Materials on the nanoscale don't always have the same properties they would in bulk; for one thing, nanomaterials are often a lot harder. Unlike most bulk materials, a crystal that is small enough can be perfect, free of defects, capable of achieving strength near its ideal theoretical limit. Scientists have long assumed that a crystal needs to be perfect to sustain stress at its theoretical limit. Beyond this point dislocations in the crystal lattice occur, and the crystal undergoes a nonreversible change of shape, or plastic deformation.

Now a team from the Department of Energy's Lawrence Berkeley National Laboratory, Purdue University, and Hysitron Incorporated in Minneapolis has found that things don't necessarily happen this way.

Source:
Lawrence Berkeley National Laboratory

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project