Home > News > Model explains how electron beams make nanotubes visible
February 8th, 2006
Model explains how electron beams make nanotubes visible
Abstract:
Scanning electron microscopes are the workhorses of imaging structures on the scale of billionths of a meter. Typically, they work by shooting a beam of electrons at the specimen and then detecting newly generated electrons as they bounce off and scatter. But carbon nanotubes, essentially rolled up sheets of chicken wire a billionth of a meter in diameter, are so narrow and their sides so thin, that scientists haven't properly understood why they are visible using a scanning electron microscope, or SEM. Now, Stanford engineers have solved the mystery, and its explanation not only could help researchers understand what they see in nanotube images but also suggests new nanotube applications such as ultra-sensitive detection of electrons and ultra-precise electron beams for microelectronics manufacturing.
Source:
Stanford University
Related News Press |
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||