Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny Rubber Balls Give Plastic Bounce

Tiny Rubber Balls Give Plastic Bounce

Washington, D.C. | August 29, 2005

Automobile bumpers that deform and recover rather than crack and splinter, computer cases that withstand the occasional rough encounter, and resilient coatings that can withstand the ravages of the sun, may all be possible if tiny functionalized rubbery particles are imbedded in their plastic matrices, according to Penn State materials scientists.

"Plastics such as polypropylene, nylon, polycarbonate, epoxy resins and other compounds are brittle and fracture easily," says Dr. T.C. Chung, professor of materials science and engineering. "Usually, manufacturers take rubbery compounds and just mix them with the plastic, but there are many issues with this approach."

The problems include difficulty in controlling the mixing of the two components and adhesion between the plastic and rubber.

Chung, and Dr. Usama F. Kandil, postdoctoral researcher in materials science and engineering, looked at another way to embed rubbery particles into a plastic matrix. They described their work today (Aug. 29) at the 230th American Chemical Society National Meeting in Washington, D.C.

The researchers used polyolefin ethylene-based elastomer, a very inexpensive stable rubber that withstands exposure to ultra violet radiation. This rubber is often used as the sidewall in many automotive tires. However, rather than simply produce micro particles of polyolefin, Chung and Kandil produce a core-shell particle structure with a tangle of polymerized polyolefin rubber forming a ball with functionalized groups hanging out like bristles.

"These functional groups can combine with the plastic and improve the adhesion of the rubber with the plastic," says Chung.

The rubber particles embedded in other materials absorb some of the energy of impact. Rather than the brittle portion breaking on impact, the rubber parts deform and absorb the energy without breaking. Chung and Kandil believe if they can introduce the rubber particles into other materials, such as ceramics, the rubber would function in the same way, making resilient ceramics. Plastics and rubbers are both polymers, but have one significant difference. Plastics have relatively high glass transition temperatures ­ the temperature at which the materials cease being pliable and become brittle like glass. Rubbers, especially polyolefin, have very low glass transition temperatures.

"Tires never freeze above glass transition temperature," says Chung. "So the material is always in a pliable state at ambient temperatures. This can improve the toughness of any material."

The functionalized groups on the outside of the rubber balls can be tailored to join with any plastic or ceramic, solving the problems of adhesion found when using only untailored rubber particles. These core and shell particles range in size from 30 nanometers to 10 micrometers.

The researchers manufacture their tiny rubber balls in a one-pot procedure that causes the rubber components to cross-link into the shape of a tiny rubber ball with their functional groups intact. Addition of a surfactant ­ a soap-like compound ­ causes the polymers to entangle into a ball with some of the functional groups sticking out from the surface. By controlling the process, the researchers can control the size of the particles from micron-sized to nano particles.

The researchers have applied for a provisional patent on this work.

####
Contact:
A'ndrea Elyse Messer
Science & Research Information Officer
Penn State
814-865-9481
814-865-9421
aem1@psu.edu

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project