Home > Press > Researchers Carve with Electricity at the Nanometer Scale
Abstract:
Process may yield miniscule molecular detection devices, semiconducting connectors and molecular sieves
By applying electric current through a thin film of oil molecules, engineers have developed a new method to precisely carve arrays of tiny holes only 10 nanometers wide into sheets of gold. The new system, called Electric Pen Lithography (EPL), uses a scanning-tunneling microscope, fitted with a tip sharpened to the size of a single atom, to deliver the charge through the dielectric oil to the target surface.
With EPL, the researchers can both see and manipulate their target at the same time, all without the constraints of the vacuum chamber required by similar processes. With such tight control, the researchers hope the relatively inexpensive procedure will have applications for crafting single DNA detection devices such as nanopores, nanoscale interconnects in biological and semiconducting devices, molecular sieves for protein sorting and nanojets for fuel or drug delivery.
Mechanical engineer Ajay Malshe of the University of Arkansas, his students Kumar Virwani and Devesh Deshpande, and co-investigator Kamalakar Rajurkar of the University of Nebraska, Lincoln will present the new innovation at the International Institution for Production Engineering Research General Assembly in Antalya, Turkey, Aug. 21-27.
For additional information, see the University of Arkansas release:
Oil Worth Its Weight in Gold in Directed Nanomachining
This research was supported by NSF Grant #0423698
Collaborative Research: Development Of Nano-Electrical Discharge Machining (NANO-EDM) For Advanced Manufacturing
About the National Science Foundation:
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.47 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.
For more information, please visit www.NSF.gov
Media Contacts:Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |