Home > Press > NIST Demonstrates Better Memory with Quantum Computer Bits
Abstract:
Improved prospects for making practical, reliable quantum computers
Physicists at the National Institute of Standards and Technology (NIST) have used charged atoms (ions) to demonstrate a quantum physics version of computer memory lasting longer than 10 seconds—more than 100,000 times longer than in previous experiments on the same ions. The advance improves prospects for making practical, reliable quantum computers (which make use of the properties of quantum systems rather than transistors for performing calculations or storing information). Quantum computers, if they can be built, could break today’s best encryption systems, accelerate database searching, develop novel products such as fraud-proof digital signatures or simulate complex biological systems to help design new drugs.
As described in the Aug. 5, 2005, issue of Physical Review Letters,* NIST scientists stored information in single beryllium ions for longer periods of time by using a different pair of the ions’ internal energy levels to represent 1 and 0 than was used in the group's previous quantum computing experiments. This new set of quantum states is unaffected by slight variations in magnetic fields, which previously caused memory losses in ions stored in electromagnetic traps.
Quantum memory must be able to store “superpositions,” an unusual property of quantum physics in which a quantum bit (qubit) such as an ion represents both 0 and 1 at the same time. The new approach enables qubits to maintain superpositions over 1 million times longer than might be needed to carry out the information processing steps in a future quantum computer. The advance is, therefore, an important step toward the goal of designing a “fault tolerant” quantum computer because it significantly reduces the computing resources needed to correct memory errors.
In related experiments also described in the paper, NIST scientists demonstrated that pairs of “entangled” ions can retain their quantum states for up to about 7 seconds. Entanglement is another unusual property of quantum physics that correlates the behavior of physically separated ions. Superposition and entanglement are the two key properties expected to give quantum computers great power.
The research was supported by the Advanced Research and Development Activity/National Security Agency. More information about NIST's quantum computing research is available at NIST: Physics Laboratory's - Quantum Information.
About National Institute of Standards and Technology (NIST):
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Commerce Department's Technology Administration. NIST's mission is to develop and promote measurement, standards, and technology to enhance productivity, facilitate trade, and improve the quality of life.
For more information, please visit www.NIST.gov
Media Contact:Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||