Home > Press > Nanotubes inspire new technique for healing broken bones
Abstract:
Researchers expect that nanotubes will improve the strength and flexibility of artificial bone materials, leading to a new type of bone graft for fractures that may also be important in the treatment of bone-thinning diseases such as osteoporosis
Scientists have shown for the first time that carbon nanotubes make an ideal scaffold for the growth of bone tissue. The new technique could change the way doctors treat broken bones, allowing them to simply inject a solution of nanotubes into a fracture to promote healing.
The report appears in the June 14 issue of the American Chemical Society's journal Chemistry of Materials. ACS is the world's largest scientific society.
The success of a bone graft depends on the ability of the scaffold to assist the natural healing process. Artificial bone scaffolds have been made from a wide variety of materials, such as polymers or peptide fibers, but they have a number of drawbacks, including low strength and the potential for rejection in the body.
"Compared with these scaffolds, the high mechanical strength, excellent flexibility and low density of carbon nanotubes make them ideal for the production of lightweight, high-strength materials such as bone," says Robert Haddon, Ph.D., a chemist at the University of California, Riverside, and lead author of the paper. Single-walled carbon nanotubes are a naturally occurring form of carbon, like graphite or diamond, where the atoms are arranged like a rolled-up tube of chicken wire. They are among the strongest known materials in the world.
Bone tissue is a natural composite of collagen fibers and hydroxyapatite crystals. Haddon and his coworkers have demonstrated for the first time that nanotubes can mimic the role of collagen as the scaffold for growth of hydroxyapatite in bone.
"This research is particularly notable in the sense that it points the way to a possible new direction for carbon nanotube applications, in the medical treatment of broken bones," says Leonard Interrante, Ph.D., editor of Chemistry of Materials and a professor in the department of chemistry and chemical biology at Rensselaer Polytechnic Institute in Troy, N.Y. "This type of research is an example of how chemistry is being used everyday, world-wide, to develop materials that will improve peoples' lives."
The researchers expect that nanotubes will improve the strength and flexibility of artificial bone materials, leading to a new type of bone graft for fractures that may also be important in the treatment of bone-thinning diseases such as osteoporosis.
In a typical bone graft, bone or synthetic material is shaped by the surgeon to fit the affected area, according to Haddon. Pins or screws then hold the healthy bone to the implanted material. Grafts provide a framework for bones to regenerate and heal, allowing bone cells to weave into the porous structure of the implant, which supports the new tissue as it grows to connect fractured bone segments.
The new technique may someday give doctors the ability to inject a solution of nanotubes into a bone fracture, and then wait for the new tissue to grow and heal.
Simple single-walled carbon nanotubes are not sufficient, since the growth of hydroxyapatite crystals relies on the ability of the scaffold to attract calcium ions and initiate the crystallization process. So the researchers carefully designed nanotubes with several chemical groups attached. Some of these groups assist the growth and orientation of hydroxyapatite crystals, allowing the researchers a degree of control over their alignment, while other groups improve the biocompatibility of nanotubes by increasing their solubility in water.
"Researchers today are realizing that mechanical mimicry of any material alone cannot succeed in duplicating the intricacies of the human body," Haddon says. "Interactions of these artificial materials with the systems of the human body are very important factors in determining clinical use."
The research is still in the early stages, but Haddon says he is encouraged by the results. Before proceeding to clinical trials, Haddon plans to investigate the toxicology of these materials and to measure their mechanical strength and flexibility in relation to commercially available bone mimics.
Writer: Jason Gorss
About the American Chemical Society:
The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with an interdisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please visit www.acs.org
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |