Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Good as Gold

Abstract:
Gold nanoparticles improve sensitivity and specificity of genetic analysis and diagnosis

Good as Gold

June 27, 2005

Even though they don't shine, they're still worth their weight in gold: nanoscopic particles made of gold are used for a number of technical and scientific purposes. Now these tiny golden particles are being put to use in another area. Chinese scientists have discovered that the polymerase chain reaction (PCR), the basis for modern genetic testing methods, works markedly better in the presence of gold nanoparticles.

As we all know from murder mysteries, a few flakes of skin under the victim's fingernails or saliva residue on an envelope's adhesive strip are enough to reveal the perpetrator. The tiny amount of genetic material in these samples is enough to give a genetic fingerprint that can be compared with known samples and assigned unambiguously to a single person. PCR takes all the credit for this; this tremendously efficient technique allows the complete genotype or a select region of the genome to be copied. Within a few hours, there is enough material for a variety of biological and medical tests. PCR is indispensable not only for forensics but also in research and diagnosis, for the identification and quantification of pathogens.

Here's how PCR works: the genetic material is in the form of double strands of DNA, which are first separated into single strands. A segment of the DNA sequence to be examined is marked with a short synthetic piece of single- stranded DNA, the primer. Starting at the primer, an enzyme then gets to work copying the strand, building block by building block. This procedure, splitting the DNA into single strands and copying it, is repeated again and again. Each cycle doubles the amount of DNA. Errors do occur in this process, which are then passed on in the copies, compromising sensitivity and specificity. This is where Chunhai Fan, Jun Hu, Zhizhou Zhang and their team step in. Their nanogold binds substantially more tightly to single- stranded than to double-stranded DNA. This effect seems to be responsible for the fact that in the presence of gold particles, fewer errors occur in the PCR and the yield is improved. This makes it possible to use smaller DNA samples from the start.

The effect of the nanogold particles is not completely understood. It is clearly analogous to a natural error avoidance system: in cells, the protein SSB binds to single-stranded DNA, but not to double-stranded DNA, hindering mismatches between the strand to be copied and the natural primer.

####

About John Wiley & Sons, Inc.:
Founded in 1807, John Wiley & Sons, Inc., provides must- have content and services to customers worldwide. Our core businesses include scientific, technical, and medical journals, encyclopedias, books, and online products and services; professional and consumer books and subscription services; and educational materials for undergraduate and graduate students and lifelong learners. Wiley has publishing, marketing, and distribution centers in the United States, Canada, Europe, Asia, and Australia. The company is listed on the New York Stock Exchange under the symbols JWa and JWb.

For more information, please visit www.wiley.com

Contact:
David Greenberg
201-748-6484
dgreenbe@wiley.com

Copyright © John Wiley & Sons

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Angewandte Chemie International Ed.

Related News Press

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project