Home > News > Nanobubbles cause metal fatigue
May 15th, 2005
Nanobubbles cause metal fatigue
Abstract:
Metals with nanoscale grain sizes can be stronger than ordinary metals, but they may also be highly susceptible to fatigue: the gradual growth of cracks under repeated cycles of stress and release. Computer simulations of the atomic-scale processes involved in the cracking of a nanocrystalline metal have now helped to clarify the reasons for this Achilles' heel.
The key problem that Diana Farkas and her colleagues at Virginia Polytechnic Institute and State University in Blacksburg have overcome in conducting their investigation is how to bridge the different scales at which the issue of cracking must be considered. Although the basic process by which a crack propagates through a metal involves sliding of individual planes of atoms in the crystalline material, the big picture becomes apparent only when one draws back to the scale of many tens of nanometres — which encompasses enormous numbers of atoms.
Source:
* Nature
Related Links |
Virginia Polytechnic Institute
Related News Press |
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||