Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Quantum Dots Get Smaller

May 13th, 2005

Quantum Dots Get Smaller

Abstract:
For all the hype about nanotechnology, sometimes small isn't quite small enough. Quantum dots enable imaging advances in fields from oncology to neuroscience, yet at a whopping dozen nanometers or more, sometimes they're just too big. "They're the size of proteins," says Marcel P. Bruchez, cofounding scientist at Quantum Dots Corp. "Anything you can do to minimize the size will minimize the impact on the biological system."

A quantum dot's size governs the color of light it emits, but the size that determines the optical properties is only the core-shell. The problem is that for biological applications, quantum dots must be changed from being hydrophobic as grown, to hydrophilic, without a loss in fluorescence or stability.

The solution is to create the high-tech equivalent of a peanut M&M: a semiconductor core (usually cadmium sulfide, selenide, or telluride), coated by an insulating shell, which is then given a ligand coating, sometimes called a cap. The amphiphilic ligand is hydrophobic where it interfaces with the shell and hydrophilic where it interfaces with the biological conjugate (e.g., antibodies, peptides, or oligonucleotides) and the environment.

Source:
* The Scientist

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Quantum Dots Corp.

Moungi Bawendi

Shimon Weiss

Evident Technologies

Shuming Nie

Related News Press

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project