Home > News > Nanotechnology: New spin on correlated electrons
April 25th, 2005
Nanotechnology: New spin on correlated electrons
Abstract:
In the Kondo effect, the flow of electrons in a solid is modulated by magnetic impurities. Nanostructures such as carbon nanotubes can be designed to obtain even more complex versions of this intriguing effect.
Nanotechnology now enables researchers to create controlled, or tunable, models of electronic behaviour in solids. On page 484 of this issue, Jarillo-Herrero et al.1 present perhaps the most sophisticated example of this approach to date, studying the flow of electrons through a carbon nanotube that is made to act like an exotic magnetic atom.
Source:
* Nature
Related News Press |
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |