Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Nanoshells' simultaneously detect and destroy cancerous cells

Abstract:
Rice Study Indicates Single Particle Can Both Find And Destroy Breast Cancer Cells

Nanoshells Simultaneously Detect And Destroy Cancer Cells

Houston, TX | April 15, 2005

Rice researchers have developed a new approach to fighting cancer that aims to both detect and destroy cancerous cells using the same, targeted nanoparticles. The research is described in the April 13 issue of the American Chemical Society's journal Nano Letters.

Current molecular imaging approaches solve only the detection half of the cancer management problem, said lead researchers Jennifer West, the Isabel C. Cameron Professor of Bioengineering, professor of chemical and biomolecular engineering and director of the Institute of Biosciences and Bioengineering, and Rebekah Drezek, the Stanley C. Moore Assistant Professor of Bioengineering and assistant professor of electrical and computer engineering.

"You can look for a molecular marker that may indicate a significant clinical problem, but you can't do anything about it," Drezek said. "We don't want to simply find the cancerous cells. We would like to locate the cells, be able to make a rational choice about whether they need to be destroyed, and if so, proceed immediately to treatment. Ultimately, we want to provide a comprehensive 'see and treat' approach to cancer care."

To this end, Drezek and West developed a new optically-based imaging and treatment method based on metal nanoshells ­ spheres measuring just a few nanometers, or billionths of a meter in diameter. Invented by Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry, nanoshells consist of a silica core coated with a thin layer of gold. Because of their size, nanoshells are subject to the strange and counterintuitive forces of quantum mechanics, and as a result, they interact with light in unique ways. They scatter and absorb light of particular colors, and by varying the diameter of the core and the shell, researchers can "tune" the shells to react to a specific wavelength of light.

In this study, the strong scattering of light by nanoshells provides the optical signal used to detect the cancer cells. West and Drezek's research team attached an antibody to the nanohells that binds with a protein that's commonly found on the surface of breast carcinoma cells and not on healthy cells. In this way, doctors can shine a harmless, non-visible beam of light through a patient¹s body and "light up" the location of breast cancer cells The technique can be readily extended to target other types of cancer or disease processes that have known surface markers.

In prior studies, West and Halas have shown that nanoshells can be made to absorb light, convert it to heat and destroy cancer tumors.

"With nanoshells, we have the unique ability to engineer particles in which both the optical scattering and the absorption peaks occur in the near-infrared (NIR) part of the spectrum," West said. "That's the spectral region where light best penetrates tissue, and because NIR light is also completely harmless to normal tissue, this method opens the door for a non-surgical means of both imaging and treating cancer."

The new approach has some significant advantages over other alternatives that are under development. For example, optical imaging is much faster and less expensive than other medical imaging modalities. And while nanoparticle contrast agents are being developed for use with such technologies as computed tomography, or CT scans, and magnetic resonance imaging, or MRI, gold nanoparticles are regarded as more biocompatible than other types of optically active nanoparticles, such as quantum dots.

Gold is a chemically inert material well-known for its biocompatibility, which is why it has found use in a variety of medical applications in the past.

"There is a prior history of the use of gold inside the body that makes the safety issues somewhat easier to address," Drezek said.

Any new technology requires extensive safety assessment before coming to market. Nanospectra Biosciences Inc., a Houston-based company that is commercializing nanoshells technology, has conducted initial evaluations of nanoshells and found no ill effects.

####


About Rice University
Rice University is consistently ranked one of America¹s best teaching and research universities. It is distinguished by its: size: 2,850 undergraduates and 1,950 graduate students; selectivity: 10 applicants for each place in the freshman class; resources: an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.



Rice Contact:
Jade Boyd
(o) 713-348-6778
(c) 713-302-2447
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project