Home > Press > NJIT Chemists Modify Carbon Nanotubes Using Microwaves
Abstract:
Novel method of changing the chemical characteristics of carbon nanotubes
Researchers at New Jersey Institute of Technology have discovered a novel method of changing the chemical characteristics of carbon nanotubes by heating them in a closed vessel microwave oven. Somenath Mitra, PhD, professor of chemistry and environmental sciences, and Zafar Iqbal, PhD, also a professor of chemistry and environmental sciences, will discuss their findings Thursday, March 17 from 8:30 a.m.-12:15 p.m. at the 229th national meeting of the American Chemical Society (ACS) at the Hyatt Regency Hotel, San Diego.
The pair, aided by doctoral student Yubing Wang, have written “Microwave-Induced, Green and Rapid Chemical Functionalization of Single-Walled Carbon Nanotubes” to be published in a forthcoming issue of the journal Carbon.
Carbon nanotubes, which were only discovered in 1991, are molecular-scale nano materials made from carbon atoms connected single-file in a tube. The tubes are closed at either end by hemispherical structures and typically exhibit lengths ranging from tens of micrometers to a few millimeters.
“We understand ourselves to be the first in the world to have discovered this method,” said Mitra. “The beauty is that our method is green and clean. We use no toxic material and reduce the reaction times from hours—on occasion even days—to three minutes.”
Iqbal noted that the method costs much less than others currently used. “Plus, the solubility of our carbon nanotubes are several times higher than any other researcher has yet reported in this short amount of time.” Solubility is the most essential characteristic of carbon nanotubes since researchers must be able to dissolve them to see them work their magic.
With a microwave oven hitting temperatures of 250 degrees Celsius, the researchers can chemically modify the tubes. Such a temperature is closer to radiation treatment than the output of a kitchen microwave oven. Since the reactions are fast, the nanotubes are not damaged or structurally modified.
“A carbon nanotube is just carbon,” said Mitra. “The surprise for us is that it’s difficult to make nanotubes react with anything. They are like diamonds—very, very inert. They don’t react and they don’t dissolve in water. But, if you can change their chemical characteristics as we have done using our method, we see them transform right before our eyes.”
Once the tiny, microscopic tubes are chemically altered, they become soluble in common solvents like water and alcohol, and new kinds of films or coatings can be produced. The tubes can also be formulated into paints and plastic nanocomposites. The functionalized nanotubes become more useful than the pristine ones because the functionalized groups can be tailored for specific applications.
“Nanotubes are opening new vistas for products and design,” added Mitra. “For example, the space shuttle includes components of lightweight carbon or carbon-polymer composites. The military especially likes these materials because ultimately they will allow for the development of lightweight equipment.”
New Jersey Institute of Technology, the state's public technological research university, enrolls more than 8,200 students in bachelor's, master's and doctoral degrees in 100 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and eLearning.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |