December 31st, 2004
Super Charged
Abstract:
(towards the bottom of the article) At MIT's electromagnetic laboratory, Schindall and lab director John Kassakian, with Ph.D. student Riccardo Signorelli, are leading a project to investigate the use of carbon nano-tubes, the latest miracle material, in electrodes. They are creating materials in which the nanotubes grow out perpendicularly from a substrate, like hair on a piece of scalp. The nanotubes would become electrically charged, just as the activated carbon does, so they would attract oppositely charged ions in the electrolyte. The nanotubes would also be spaced so as to hold these ions, much as a sea anemone grips small sea creatures in its tentacles. The advantage is that this arrangement can in theory trap many more ions than even the pores of activated carbon—enough perhaps to raise the energy density of an ultracapacitor 100-fold, Schindall estimates.
So far, he and Signorelli have demonstrated technology that can grow the right kind of nanotubes and space them appropriately. By next summer, they hope to grow a patch of electrode big enough to test in an electrolyte, in order to assess its capacitance characteristics. If it works as well as their studies suggest, and if it can be easily manufactured—two big ifs—the dream of a near-ideal energy storage device will be that much closer to realization. "Suddenly, electrical energy storage turns on its head—potentially," Schindall says.
Source:
IEEE
Related Links |
Related News Press |
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||