Home > News > Method May Help Scientists Connect the Quantum Dots
December 14th, 2004
Method May Help Scientists Connect the Quantum Dots
Abstract:
Researchers at the University of Missouri-Rolla have developed a new kind of laser writing: one that shrinks “text” to the size of atoms, then embeds the text into a writing surface as light as air. But with this process, the “ink” is a semiconductor that could write a new chapter in the field of micro-computing.
Basing their work on photolithography, a technique commonly used by microchip makers to print circuitry on silicon wafers, the UMR researchers zapped isolated spots of a silica gel with a laser. In the process, they discovered that they could create tiny semiconducting materials known as quantum dots, which could lead to new advances in electronics, computing and materials science.
Source:
newswise
Related Links |
Related News Press |
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |